EG3111 Finite Element Analysis and Design

Exercise sheet \#4: Beam and Frame Elements

Questions

1. Use two beam elements to solve the problem of a beam of length $2 L$ fixed at both ends subject to a vertical load $P \mathrm{~N}$ at the centre, as shown in Figure 1.

Figure 1: A beam subject to a central point load P.
2. Use two beam elements to solve the problem of a beam of length $2 L$ fixed at both ends subject to a distributed load $p_{0} \mathrm{~N} / \mathrm{m}$, as shown in Figure 2.

Figure 2: A beam subject to a uniformly distributed load p_{0}.
3. Use two beam elements to solve the problem of a beam of length $2 L$ fixed at both ends subject to a linearly distributed load $p(x) \mathrm{N} / \mathrm{m}$, as shown in Figure 3.

Figure 3: A beam subject to a linearly distributed load $p(x)$.
4. A framework formed from two frame elements, shown in Figure 4, is subjected to a horizontal point force P. The extensional stiffness of the elements is $k=$ $E A / L$ and the bending stiffness is $\alpha=E I / L^{3}$. Formulate the matrices required to find the unknown displacements, forces and moments. Note: there is no need to solve the 3×3 matrices.

Figure 4: A framework formed from two frame elements

